Papers
Topics
Authors
Recent
2000 character limit reached

Logit-Based Ensemble Distribution Distillation for Robust Autoregressive Sequence Uncertainties (2305.10384v1)

Published 17 May 2023 in cs.LG and cs.CL

Abstract: Efficiently and reliably estimating uncertainty is an important objective in deep learning. It is especially pertinent to autoregressive sequence tasks, where training and inference costs are typically very high. However, existing research has predominantly focused on tasks with static data such as image classification. In this work, we investigate Ensemble Distribution Distillation (EDD) applied to large-scale natural language sequence-to-sequence data. EDD aims to compress the superior uncertainty performance of an expensive (teacher) ensemble into a cheaper (student) single model. Importantly, the ability to separate knowledge (epistemic) and data (aleatoric) uncertainty is retained. Existing probability-space approaches to EDD, however, are difficult to scale to large vocabularies. We show, for modern transformer architectures on large-scale translation tasks, that modelling the ensemble logits, instead of softmax probabilities, leads to significantly better students. Moreover, the students surprisingly even outperform Deep Ensembles by up to ~10% AUROC on out-of-distribution detection, whilst matching them at in-distribution translation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.