Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rethinking Data Augmentation for Tabular Data in Deep Learning (2305.10308v2)

Published 17 May 2023 in cs.LG and cs.AI

Abstract: Tabular data is the most widely used data format in ML. While tree-based methods outperform DL-based methods in supervised learning, recent literature reports that self-supervised learning with Transformer-based models outperforms tree-based methods. In the existing literature on self-supervised learning for tabular data, contrastive learning is the predominant method. In contrastive learning, data augmentation is important to generate different views. However, data augmentation for tabular data has been difficult due to the unique structure and high complexity of tabular data. In addition, three main components are proposed together in existing methods: model structure, self-supervised learning methods, and data augmentation. Therefore, previous works have compared the performance without comprehensively considering these components, and it is not clear how each component affects the actual performance. In this study, we focus on data augmentation to address these issues. We propose a novel data augmentation method, $\textbf{M}$ask $\textbf{T}$oken $\textbf{R}$eplacement ($\texttt{MTR}$), which replaces the mask token with a portion of each tokenized column; $\texttt{MTR}$ takes advantage of the properties of Transformer, which is becoming the predominant DL-based architecture for tabular data, to perform data augmentation for each column embedding. Through experiments with 13 diverse public datasets in both supervised and self-supervised learning scenarios, we show that $\texttt{MTR}$ achieves competitive performance against existing data augmentation methods and improves model performance. In addition, we discuss specific scenarios in which $\texttt{MTR}$ is most effective and identify the scope of its application. The code is available at https://github.com/somaonishi/MTR/.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.