Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Estimation of Remaining Useful Life and SOH of Lithium Ion Batteries (For EV Vehicles) (2305.10298v1)

Published 17 May 2023 in cs.LG and cs.AI

Abstract: Lithium-ion batteries are widely used in various applications, including portable electronic devices, electric vehicles, and renewable energy storage systems. Accurately estimating the remaining useful life of these batteries is crucial for ensuring their optimal performance, preventing unexpected failures, and reducing maintenance costs. In this paper, we present a comprehensive review of the existing approaches for estimating the remaining useful life of lithium-ion batteries, including data-driven methods, physics-based models, and hybrid approaches. We also propose a novel approach based on machine learning techniques for accurately predicting the remaining useful life of lithium-ion batteries. Our approach utilizes various battery performance parameters, including voltage, current, and temperature, to train a predictive model that can accurately estimate the remaining useful life of the battery. We evaluate the performance of our approach on a dataset of lithium-ion battery cycles and compare it with other state-of-the-art methods. The results demonstrate the effectiveness of our proposed approach in accurately estimating the remaining useful life of lithium-ion batteries.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.