Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Explain Any Concept: Segment Anything Meets Concept-Based Explanation (2305.10289v1)

Published 17 May 2023 in cs.CV and cs.AI

Abstract: EXplainable AI (XAI) is an essential topic to improve human understanding of deep neural networks (DNNs) given their black-box internals. For computer vision tasks, mainstream pixel-based XAI methods explain DNN decisions by identifying important pixels, and emerging concept-based XAI explore forming explanations with concepts (e.g., a head in an image). However, pixels are generally hard to interpret and sensitive to the imprecision of XAI methods, whereas "concepts" in prior works require human annotation or are limited to pre-defined concept sets. On the other hand, driven by large-scale pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promotable framework for performing precise and comprehensive instance segmentation, enabling automatic preparation of concept sets from a given image. This paper for the first time explores using SAM to augment concept-based XAI. We offer an effective and flexible concept-based explanation method, namely Explain Any Concept (EAC), which explains DNN decisions with any concept. While SAM is highly effective and offers an "out-of-the-box" instance segmentation, it is costly when being integrated into defacto XAI pipelines. We thus propose a lightweight per-input equivalent (PIE) scheme, enabling efficient explanation with a surrogate model. Our evaluation over two popular datasets (ImageNet and COCO) illustrate the highly encouraging performance of EAC over commonly-used XAI methods.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.