Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

How does Contrastive Learning Organize Images? (2305.10229v2)

Published 17 May 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Contrastive learning, a dominant self-supervised technique, emphasizes similarity in representations between augmentations of the same input and dissimilarity for different ones. Although low contrastive loss often correlates with high classification accuracy, recent studies challenge this direct relationship, spotlighting the crucial role of inductive biases. We delve into these biases from a clustering viewpoint, noting that contrastive learning creates locally dense clusters, contrasting the globally dense clusters from supervised learning. To capture this discrepancy, we introduce the "RLD (Relative Local Density)" metric. While this cluster property can hinder linear classification accuracy, leveraging a Graph Convolutional Network (GCN) based classifier mitigates this, boosting accuracy and reducing parameter requirements. The code is available \href{https://github.com/xsgxlz/How-does-Contrastive-Learning-Organize-Images/tree/main}{here}.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.