Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation (2305.10223v4)

Published 17 May 2023 in cs.CV and cs.MM

Abstract: Contemporary Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast, achieving commendable results on specific datasets. Nevertheless, these approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios. Insufficient constraints on complex pixel-wise mapping learning lead to overfitting to specific types of noise and artifacts associated with low-light conditions, reducing effectiveness in variable lighting scenarios. To this end, we first propose a method for estimating the noise level in low light images in a quick and accurate way. This facilitates precise denoising, prevents over-smoothing, and adapts to dynamic noise patterns. Subsequently, we devise a Learnable Illumination Interpolator (LII), which employs learnlable interpolation operations between the input and unit vector to satisfy general constraints between illumination and input. Finally, we introduce a self-regularization loss that incorporates intrinsic image properties and essential visual attributes to guide the output towards meeting human visual expectations. Comprehensive experiments validate the competitiveness of our proposed algorithm in both qualitative and quantitative assessments. Notably, our noise estimation method, with linear time complexity and suitable for various denoisers, significantly improves both denoising and enhancement performance. Benefiting from this, our approach achieves a 0.675dB PSNR improvement on the LOL dataset and 0.818dB on the MIT dataset on LLIE task, even compared to supervised methods. The source code is available at \href{https://doi.org/10.5281/zenodo.11463142}{this DOI repository} and the specific code for noise estimation can be found at \href{https://github.com/GoogolplexGoodenough/noise_estimate}{this separate GitHub link}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. doi:https://doi.org/10.1016/j.neucom.2021.04.076. URL https://www.sciencedirect.com/science/article/pii/S0925231221006263
  2. doi:https://doi.org/10.1016/j.neucom.2022.08.042. URL https://www.sciencedirect.com/science/article/pii/S0925231222010165
  3. doi:10.1109/TITS.2022.3177615.
  4. doi:10.1109/MLSP49062.2020.9231894. URL https://doi.org/10.1109/MLSP49062.2020.9231894
  5. doi:10.1016/J.NEUCOM.2022.08.042. URL https://doi.org/10.1016/j.neucom.2022.08.042
  6. doi:10.1016/J.NEUCOM.2021.03.107. URL https://doi.org/10.1016/j.neucom.2021.03.107
  7. doi:10.1109/CVPR.2017.300.
  8. doi:10.1109/TIP.2017.2662206.
  9. doi:10.1109/CVPR.2019.00181.
  10. doi:10.1109/TIP.2012.2221728.
  11. doi:10.1109/TIP.2013.2283400.
  12. doi:10.1109/ICCV.2015.62.
  13. doi:10.1109/TIP.2016.2588320.
  14. doi:10.1109/ICIP.2012.6467022.
  15. doi:10.1109/TIP.2016.2639450.
  16. doi:10.1109/TIP.2015.2442920.
  17. doi:10.1109/TIP.2013.2261309.
  18. doi:10.1007/s11042-017-4783-x. URL https://doi.org/10.1007/s11042-017-4783-x
  19. doi:10.1002/j.1538-7305.1948.tb01338.x.
  20. doi:10.1109/TIP.2006.888338.
  21. A. Mittal, R. Soundararajan, A. C. Bovik, Making a “completely blind” image quality analyzer, IEEE Signal Processing Letters 20 (3) (2013) 209–212. doi:10.1109/LSP.2012.2227726.
  22. doi:10.1109/TIP.2018.2810539.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.