Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generation of 3D Molecules in Pockets via Language Model (2305.10133v3)

Published 17 May 2023 in cs.LG and q-bio.BM

Abstract: Generative models for molecules based on sequential line notation (e.g. SMILES) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important 3D spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines LLMs and geometric deep learning technology. A new molecular representation, fragment-based SMILES with local and global coordinates, was developed to assist the model in learning molecular topologies and atomic spatial positions. Additionally, we trained a separate noncovalent interaction predictor to provide essential binding pattern information for the generative model. Lingo3DMol can efficiently traverse drug-like chemical spaces, preventing the formation of unusual structures. The Directory of Useful Decoys-Enhanced (DUD-E) dataset was used for evaluation. Lingo3DMol outperformed state-of-the-art methods in terms of drug-likeness, synthetic accessibility, pocket binding mode, and molecule generation speed.

Citations (20)

Summary

We haven't generated a summary for this paper yet.