Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Segmentation of Aortic Vessel Tree in CT Scans with Deep Fully Convolutional Networks (2305.09833v1)

Published 16 May 2023 in eess.IV and cs.CV

Abstract: Automatic and accurate segmentation of aortic vessel tree (AVT) in computed tomography (CT) scans is crucial for early detection, diagnosis and prognosis of aortic diseases, such as aneurysms, dissections and stenosis. However, this task remains challenges, due to the complexity of aortic vessel tree and amount of CT angiography data. In this technical report, we use two-stage fully convolutional networks (FCNs) to automatically segment AVT in CTA scans from multiple centers. Specifically, we firstly adopt a 3D FCN with U-shape network architecture to segment AVT in order to produce topology attention and accelerate medical image analysis pipeline. And then another one 3D FCN is trained to segment branches of AVT along the pseudo-centerline of AVT. In the 2023 MICCAI Segmentation of the Aorta (SEG.A.) Challenge , the reported method was evaluated on the public dataset of 56 cases. The resulting Dice Similarity Coefficient (DSC) is 0.920, Jaccard Similarity Coefficient (JSC) is 0.861, Recall is 0.922, and Precision is 0.926 on a 5-fold random split of training and validation set.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)