Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Method for Training-free Person Image Picture Generation (2305.09817v1)

Published 16 May 2023 in cs.CV, cs.AI, cs.GR, and cs.LG

Abstract: The current state-of-the-art Diffusion model has demonstrated excellent results in generating images. However, the images are monotonous and are mostly the result of the distribution of images of people in the training set, making it challenging to generate multiple images for a fixed number of individuals. This problem can often only be solved by fine-tuning the training of the model. This means that each individual/animated character image must be trained if it is to be drawn, and the hardware and cost of this training is often beyond the reach of the average user, who accounts for the largest number of people. To solve this problem, the Character Image Feature Encoder model proposed in this paper enables the user to use the process by simply providing a picture of the character to make the image of the character in the generated image match the expectation. In addition, various details can be adjusted during the process using prompts. Unlike traditional Image-to-Image models, the Character Image Feature Encoder extracts only the relevant image features, rather than information about the model's composition or movements. In addition, the Character Image Feature Encoder can be adapted to different models after training. The proposed model can be conveniently incorporated into the Stable Diffusion generation process without modifying the model's ontology or used in combination with Stable Diffusion as a joint model.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube