Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Beauty or the Beast: Which Aspect of Synthetic Medical Images Deserves Our Focus? (2305.09789v2)

Published 3 May 2023 in eess.IV and cs.CV

Abstract: Training medical AI algorithms requires large volumes of accurately labeled datasets, which are difficult to obtain in the real world. Synthetic images generated from deep generative models can help alleviate the data scarcity problem, but their effectiveness relies on their fidelity to real-world images. Typically, researchers select synthesis models based on image quality measurements, prioritizing synthetic images that appear realistic. However, our empirical analysis shows that high-fidelity and visually appealing synthetic images are not necessarily superior. In fact, we present a case where low-fidelity synthetic images outperformed their high-fidelity counterparts in downstream tasks. Our findings highlight the importance of comprehensive analysis before incorporating synthetic data into real-world applications. We hope our results will raise awareness among the research community of the value of low-fidelity synthetic images in medical AI algorithm training.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube