Papers
Topics
Authors
Recent
2000 character limit reached

Distributionally Robust Differential Dynamic Programming with Wasserstein Distance (2305.09760v1)

Published 16 May 2023 in eess.SY, cs.SY, and math.OC

Abstract: Differential dynamic programming (DDP) is a popular technique for solving nonlinear optimal control problems with locally quadratic approximations. However, existing DDP methods are not designed for stochastic systems with unknown disturbance distributions. To address this limitation, we propose a novel DDP method that approximately solves the Wasserstein distributionally robust control (WDRC) problem, where the true disturbance distribution is unknown but a disturbance sample dataset is given. Our approach aims to develop a practical and computationally efficient DDP solution. To achieve this, we use the Kantrovich duality principle to decompose the value function in a novel way and derive closed-form expressions of the distributionally robust control and worst-case distribution policies to be used in each iteration of our DDP algorithm. This characterization makes our method tractable and scalable without the need for numerically solving any minimax optimization problems. The superior out-of-sample performance and scalability of our algorithm are demonstrated through kinematic car navigation and coupled oscillator problems.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.