Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FedHGN: A Federated Framework for Heterogeneous Graph Neural Networks (2305.09729v1)

Published 16 May 2023 in cs.LG, cs.AI, cs.DC, and cs.SI

Abstract: Heterogeneous graph neural networks (HGNNs) can learn from typed and relational graph data more effectively than conventional GNNs. With larger parameter spaces, HGNNs may require more training data, which is often scarce in real-world applications due to privacy regulations (e.g., GDPR). Federated graph learning (FGL) enables multiple clients to train a GNN collaboratively without sharing their local data. However, existing FGL methods mainly focus on homogeneous GNNs or knowledge graph embeddings; few have considered heterogeneous graphs and HGNNs. In federated heterogeneous graph learning, clients may have private graph schemas. Conventional FL/FGL methods attempting to define a global HGNN model would violate schema privacy. To address these challenges, we propose FedHGN, a novel and general FGL framework for HGNNs. FedHGN adopts schema-weight decoupling to enable schema-agnostic knowledge sharing and employs coefficients alignment to stabilize the training process and improve HGNN performance. With better privacy preservation, FedHGN consistently outperforms local training and conventional FL methods on three widely adopted heterogeneous graph datasets with varying client numbers. The code is available at https://github.com/cynricfu/FedHGN .

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com