Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Trojan Playground: A Reinforcement Learning Framework for Hardware Trojan Insertion and Detection (2305.09592v2)

Published 16 May 2023 in cs.CR and cs.AR

Abstract: Current Hardware Trojan (HT) detection techniques are mostly developed based on a limited set of HT benchmarks. Existing HT benchmark circuits are generated with multiple shortcomings, i.e., i) they are heavily biased by the designers' mindset when created, and ii) they are created through a one-dimensional lens, mainly the signal activity of nets. We introduce the first automated Reinforcement Learning (RL) HT insertion and detection framework to address these shortcomings. In the HT insertion phase, an RL agent explores the circuits and finds locations best for keeping inserted HTs hidden. On the defense side, we introduce a multi-criteria RL-based HT detector that generates test vectors to discover the existence of HTs. Using the proposed framework, one can explore the HT insertion and detection design spaces to break the limitations of human mindset and benchmark issues, ultimately leading toward the next generation of innovative detectors. We demonstrate the efficacy of our framework on ISCAS-85 benchmarks, provide the attack and detection success rates, and define a methodology for comparing our techniques.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.