A model reduction method for large-scale linear multidimensional dynamical systems (2305.09361v2)
Abstract: In this work, we explore the application of multilinear algebra in reducing the order of multidimentional linear time-invariant (MLTI) systems. We use tensor Krylov subspace methods as key tools, which involve approximating the system solution within a low-dimensional subspace. We introduce the tensor extended block and global Krylov subspaces and the corresponding Arnoldi based processes. Using these methods, we develop a model reduction using projection techniques. We also show how these methods could be used to solve large-scale Lyapunov tensor equations that are needed in the balanced truncation method which is a technique for order reduction. We demonstrate how to extract approximate solutions via the Einstein product using the tensor extended block Arnoldi and the extended global Arnoldi processes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.