Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Counterfactual Outcome Prediction using Structured State Space Model (2305.09207v1)

Published 16 May 2023 in cs.LG, cs.AI, and stat.ME

Abstract: Counterfactual outcome prediction in longitudinal data has recently gained attention due to its potential applications in healthcare and social sciences. In this paper, we explore the use of the state space model, a popular sequence model, for this task. Specifically, we compare the performance of two models: Treatment Effect Neural Controlled Differential Equation (TE-CDE) and structured state space model (S4Model). While TE-CDE uses controlled differential equations to address time-dependent confounding, it suffers from optimization issues and slow training. In contrast, S4Model is more efficient at modeling long-range dependencies and easier to train. We evaluate the models on a simulated lung tumor growth dataset and find that S4Model outperforms TE-CDE with 1.63x reduction in per epoch training time and 10x better normalized mean squared error. Additionally, S4Model is more stable during training and less sensitive to weight initialization than TE-CDE. Our results suggest that the state space model may be a promising approach for counterfactual outcome prediction in longitudinal data, with S4Model offering a more efficient and effective alternative to TE-CDE.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)