Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Weighted Möbius Score: A Unified Framework for Feature Attribution (2305.09204v1)

Published 16 May 2023 in cs.LG, cs.AI, and cs.CL

Abstract: Feature attribution aims to explain the reasoning behind a black-box model's prediction by identifying the impact of each feature on the prediction. Recent work has extended feature attribution to interactions between multiple features. However, the lack of a unified framework has led to a proliferation of methods that are often not directly comparable. This paper introduces a parameterized attribution framework -- the Weighted M\"obius Score -- and (i) shows that many different attribution methods for both individual features and feature interactions are special cases and (ii) identifies some new methods. By studying the vector space of attribution methods, our framework utilizes standard linear algebra tools and provides interpretations in various fields, including cooperative game theory and causal mediation analysis. We empirically demonstrate the framework's versatility and effectiveness by applying these attribution methods to feature interactions in sentiment analysis and chain-of-thought prompting.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.