Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Analysis, Control, and State Estimation for the Networked Competitive Multi-Virus SIR Model (2305.09068v1)

Published 15 May 2023 in eess.SY and cs.SY

Abstract: This paper proposes a novel discrete-time multi-virus susceptible-infected-recovered (SIR) model that captures the spread of competing epidemics over a population network. First, we provide sufficient conditions for the infection level of all the viruses over the networked model to converge to zero in exponential time. Second, we propose an observation model which captures the summation of all the viruses' infection levels in each node, which represents the individuals who are infected by different viruses but share similar symptoms. Third, we present a sufficient condition for the model to be strongly locally observable, assuming that the network has only infected or recovered individuals. Fourth, we propose a Luenberger observer for estimating the states of our system. We prove that the estimation error of our proposed estimator converges to zero asymptotically with the observer gain. Finally, we present a distributed feedback controller which guarantees that each virus dies out at an exponential rate. We then show via simulations that the estimation error of the Luenberger observer converges to zero before the viruses die out.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.