Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Linear Embeddings for Non-Linear Network Dynamics with Koopman Message Passing (2305.09060v1)

Published 15 May 2023 in cs.LG

Abstract: Recently, Koopman operator theory has become a powerful tool for developing linear representations of non-linear dynamical systems. However, existing data-driven applications of Koopman operator theory, including both traditional and deep learning approaches, perform poorly on non-linear network dynamics problems as they do not address the underlying geometric structure. In this paper we present a novel approach based on Koopman operator theory and message passing networks that finds a linear representation for the dynamical system which is globally valid at any time step. The linearisations found by our method produce predictions on a suite of network dynamics problems that are several orders of magnitude better than current state-of-the-art techniques. We also apply our approach to the highly non-linear training dynamics of neural network architectures, and obtain linear representations which can generate network parameters with comparable performance to networks trained by classical optimisers.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.