Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Understanding and Bridging the Modality Gap for Speech Translation (2305.08706v1)

Published 15 May 2023 in cs.CL, cs.SD, and eess.AS

Abstract: How to achieve better end-to-end speech translation (ST) by leveraging (text) machine translation (MT) data? Among various existing techniques, multi-task learning is one of the effective ways to share knowledge between ST and MT in which additional MT data can help to learn source-to-target mapping. However, due to the differences between speech and text, there is always a gap between ST and MT. In this paper, we first aim to understand this modality gap from the target-side representation differences, and link the modality gap to another well-known problem in neural machine translation: exposure bias. We find that the modality gap is relatively small during training except for some difficult cases, but keeps increasing during inference due to the cascading effect. To address these problems, we propose the Cross-modal Regularization with Scheduled Sampling (Cress) method. Specifically, we regularize the output predictions of ST and MT, whose target-side contexts are derived by sampling between ground truth words and self-generated words with a varying probability. Furthermore, we introduce token-level adaptive training which assigns different training weights to target tokens to handle difficult cases with large modality gaps. Experiments and analysis show that our approach effectively bridges the modality gap, and achieves promising results in all eight directions of the MuST-C dataset.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)