NLG Evaluation Metrics Beyond Correlation Analysis: An Empirical Metric Preference Checklist (2305.08566v4)
Abstract: In this study, we analyze automatic evaluation metrics for Natural Language Generation (NLG), specifically task-agnostic metrics and human-aligned metrics. Task-agnostic metrics, such as Perplexity, BLEU, BERTScore, are cost-effective and highly adaptable to diverse NLG tasks, yet they have a weak correlation with human. Human-aligned metrics (CTC, CtrlEval, UniEval) improves correlation level by incorporating desirable human-like qualities as training objective. However, their effectiveness at discerning system-level performance and quality of system outputs remain unclear. We present metric preference checklist as a framework to assess the effectiveness of automatic metrics in three NLG tasks: Text Summarization, Dialogue Response Generation, and Controlled Generation. Our proposed framework provides access: (i) for verifying whether automatic metrics are faithful to human preference, regardless of their correlation level to human; and (ii) for inspecting the strengths and limitations of NLG systems via pairwise evaluation. We show that automatic metrics provide a better guidance than human on discriminating system-level performance in Text Summarization and Controlled Generation tasks. We also show that multi-aspect human-aligned metric (UniEval) is not necessarily dominant over single-aspect human-aligned metrics (CTC, CtrlEval) and task-agnostic metrics (BLEU, BERTScore), particularly in Controlled Generation tasks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.