Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 167 tok/s Pro
GPT OSS 120B 400 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Enhancing Performance of Vision Transformers on Small Datasets through Local Inductive Bias Incorporation (2305.08551v1)

Published 15 May 2023 in cs.CV and cs.AI

Abstract: Vision transformers (ViTs) achieve remarkable performance on large datasets, but tend to perform worse than convolutional neural networks (CNNs) when trained from scratch on smaller datasets, possibly due to a lack of local inductive bias in the architecture. Recent studies have therefore added locality to the architecture and demonstrated that it can help ViTs achieve performance comparable to CNNs in the small-size dataset regime. Existing methods, however, are architecture-specific or have higher computational and memory costs. Thus, we propose a module called Local InFormation Enhancer (LIFE) that extracts patch-level local information and incorporates it into the embeddings used in the self-attention block of ViTs. Our proposed module is memory and computation efficient, as well as flexible enough to process auxiliary tokens such as the classification and distillation tokens. Empirical results show that the addition of the LIFE module improves the performance of ViTs on small image classification datasets. We further demonstrate how the effect can be extended to downstream tasks, such as object detection and semantic segmentation. In addition, we introduce a new visualization method, Dense Attention Roll-Out, specifically designed for dense prediction tasks, allowing the generation of class-specific attention maps utilizing the attention maps of all tokens.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube