Emergent Mind

Abstract

Vision transformers (ViTs) achieve remarkable performance on large datasets, but tend to perform worse than convolutional neural networks (CNNs) when trained from scratch on smaller datasets, possibly due to a lack of local inductive bias in the architecture. Recent studies have therefore added locality to the architecture and demonstrated that it can help ViTs achieve performance comparable to CNNs in the small-size dataset regime. Existing methods, however, are architecture-specific or have higher computational and memory costs. Thus, we propose a module called Local InFormation Enhancer (LIFE) that extracts patch-level local information and incorporates it into the embeddings used in the self-attention block of ViTs. Our proposed module is memory and computation efficient, as well as flexible enough to process auxiliary tokens such as the classification and distillation tokens. Empirical results show that the addition of the LIFE module improves the performance of ViTs on small image classification datasets. We further demonstrate how the effect can be extended to downstream tasks, such as object detection and semantic segmentation. In addition, we introduce a new visualization method, Dense Attention Roll-Out, specifically designed for dense prediction tasks, allowing the generation of class-specific attention maps utilizing the attention maps of all tokens.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.