Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

SRRM: Semantic Region Relation Model for Indoor Scene Recognition (2305.08540v1)

Published 15 May 2023 in cs.CV

Abstract: Despite the remarkable success of convolutional neural networks in various computer vision tasks, recognizing indoor scenes still presents a significant challenge due to their complex composition. Consequently, effectively leveraging semantic information in the scene has been a key issue in advancing indoor scene recognition. Unfortunately, the accuracy of semantic segmentation has limited the effectiveness of existing approaches for leveraging semantic information. As a result, many of these approaches remain at the stage of auxiliary labeling or co-occurrence statistics, with few exploring the contextual relationships between the semantic elements directly within the scene. In this paper, we propose the Semantic Region Relationship Model (SRRM), which starts directly from the semantic information inside the scene. Specifically, SRRM adopts an adaptive and efficient approach to mitigate the negative impact of semantic ambiguity and then models the semantic region relationship to perform scene recognition. Additionally, to more comprehensively exploit the information contained in the scene, we combine the proposed SRRM with the PlacesCNN module to create the Combined Semantic Region Relation Model (CSRRM), and propose a novel information combining approach to effectively explore the complementary contents between them. CSRRM significantly outperforms the SOTA methods on the MIT Indoor 67, reduced Places365 dataset, and SUN RGB-D without retraining. The code is available at: https://github.com/ChuanxinSong/SRRM

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.