Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Exploiting Frequency Spectrum of Adversarial Images for General Robustness (2305.08439v1)

Published 15 May 2023 in cs.CV

Abstract: In recent years, there has been growing concern over the vulnerability of convolutional neural networks (CNNs) to image perturbations. However, achieving general robustness against different types of perturbations remains challenging, in which enhancing robustness to some perturbations (e.g., adversarial perturbations) may degrade others (e.g., common corruptions). In this paper, we demonstrate that adversarial training with an emphasis on phase components significantly improves model performance on clean, adversarial, and common corruption accuracies. We propose a frequency-based data augmentation method, Adversarial Amplitude Swap, that swaps the amplitude spectrum between clean and adversarial images to generate two novel training images: adversarial amplitude and adversarial phase images. These images act as substitutes for adversarial images and can be implemented in various adversarial training setups. Through extensive experiments, we demonstrate that our method enables the CNNs to gain general robustness against different types of perturbations and results in a uniform performance against all types of common corruptions.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.