Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

New Support Size Bounds for Integer Programming, Applied to Makespan Minimization on Uniformly Related Machines (2305.08432v1)

Published 15 May 2023 in cs.DS and cs.DM

Abstract: Mixed-integer linear programming (MILP) is at the core of many advanced algorithms for solving fundamental problems in combinatorial optimization. The complexity of solving MILPs directly correlates with their support size, which is the minimum number of non-zero integer variables in an optimal solution. A haLLMark result by Eisenbrand and Shmonin (Oper. Res. Lett., 2006) shows that any feasible integer linear program (ILP) has a solution with support size $s\leq 2m\cdot\log(4m\Delta)$, where $m$ is the number of constraints, and $\Delta$ is the largest coefficient in any constraint. Our main combinatorial result are improved support size bounds for ILPs. To improve granularity, we analyze for the largest $1$-norm $A_{\max}$ of any column of the constraint matrix, instead of $\Delta$. We show a support size upper bound of $s\leq m\cdot(\log(3A_{\max})+\sqrt{\log(A_{\max})})$, by deriving a new bound on the -1 branch of the Lambert $\mathcal{W}$ function. Additionally, we provide a lower bound of $m\log(A_{\max})$, proving our result asymptotically optimal. Furthermore, we give support bounds of the form $s\leq 2m\cdot\log(1.46A_{\max})$. These improve upon the previously best constants by Aliev. et. al. (SIAM J. Optim., 2018), because all our upper bounds hold equally with $A_{\max}$ replaced by $\sqrt{m}\Delta$. Using our combinatorial result, we obtain the fastest known approximation schemes (EPTAS) for the fundamental scheduling problem of makespan minimization of uniformly related machines ($Q\mid\mid C_{\max}$).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.