Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

New Support Size Bounds for Integer Programming, Applied to Makespan Minimization on Uniformly Related Machines (2305.08432v1)

Published 15 May 2023 in cs.DS and cs.DM

Abstract: Mixed-integer linear programming (MILP) is at the core of many advanced algorithms for solving fundamental problems in combinatorial optimization. The complexity of solving MILPs directly correlates with their support size, which is the minimum number of non-zero integer variables in an optimal solution. A hallmark result by Eisenbrand and Shmonin (Oper. Res. Lett., 2006) shows that any feasible integer linear program (ILP) has a solution with support size $s\leq 2m\cdot\log(4m\Delta)$, where $m$ is the number of constraints, and $\Delta$ is the largest coefficient in any constraint. Our main combinatorial result are improved support size bounds for ILPs. To improve granularity, we analyze for the largest $1$-norm $A_{\max}$ of any column of the constraint matrix, instead of $\Delta$. We show a support size upper bound of $s\leq m\cdot(\log(3A_{\max})+\sqrt{\log(A_{\max})})$, by deriving a new bound on the -1 branch of the Lambert $\mathcal{W}$ function. Additionally, we provide a lower bound of $m\log(A_{\max})$, proving our result asymptotically optimal. Furthermore, we give support bounds of the form $s\leq 2m\cdot\log(1.46A_{\max})$. These improve upon the previously best constants by Aliev. et. al. (SIAM J. Optim., 2018), because all our upper bounds hold equally with $A_{\max}$ replaced by $\sqrt{m}\Delta$. Using our combinatorial result, we obtain the fastest known approximation schemes (EPTAS) for the fundamental scheduling problem of makespan minimization of uniformly related machines ($Q\mid\mid C_{\max}$).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.