Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Validated integration of semilinear parabolic PDEs (2305.08221v2)

Published 14 May 2023 in math.NA, cs.NA, math.AP, and math.DS

Abstract: Integrating evolutionary partial differential equations (PDEs) is an essential ingredient for studying the dynamics of the solutions. Indeed, simulations are at the core of scientific computing, but their mathematical reliability is often difficult to quantify, especially when one is interested in the output of a given simulation, rather than in the asymptotic regime where the discretization parameter tends to zero. In this paper we present a computer-assisted proof methodology to perform rigorous time integration for scalar semilinear parabolic PDEs with periodic boundary conditions. We formulate an equivalent zero-finding problem based on a variations of constants formula in Fourier space. Using Chebyshev interpolation and domain decomposition, we then finish the proof with a Newton--Kantorovich type argument. The final output of this procedure is a proof of existence of an orbit, together with guaranteed error bounds between this orbit and a numerically computed approximation. We illustrate the versatility of the approach with results for the Fisher equation, the Swift--Hohenberg equation, the Ohta--Kawasaki equation and the Kuramoto--Sivashinsky equation. We expect that this rigorous integrator can form the basis for studying boundary value problems for connecting orbits in partial differential equations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.