Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Accelerating genetic optimization of nonlinear model predictive control by learning optimal search space size (2305.08094v2)

Published 14 May 2023 in math.OC, cs.CC, cs.NE, and cs.RO

Abstract: Genetic algorithm (GA) is typically used to solve nonlinear model predictive control's optimization problem. However, the size of the search space in which the GA searches for the optimal control inputs is crucial for its applicability to fast-response systems. This paper proposes accelerating the genetic optimization of NMPC by learning optimal search space size. The approach trains a multivariate regression model to adaptively predict the best smallest size of the search space in every control cycle. The proposed approach reduces the GA's computational time, improves the chance of convergence to better control inputs, and provides a stable and feasible solution. The proposed approach was evaluated on three nonlinear systems and compared to four other evolutionary algorithms implemented in a processor-in-the-loop fashion. The results show that the proposed approach provides a 17-45\% reduction in computational time and increases the convergence rate by 35-47\%. The source code is available on GitHub.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.