Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

AMTSS: An Adaptive Multi-Teacher Single-Student Knowledge Distillation Framework For Multilingual Language Inference (2305.07928v1)

Published 13 May 2023 in cs.CL and cs.AI

Abstract: Knowledge distillation is of key importance to launching multilingual pre-trained LLMs for real applications. To support cost-effective language inference in multilingual settings, we propose AMTSS, an adaptive multi-teacher single-student distillation framework, which allows distilling knowledge from multiple teachers to a single student. We first introduce an adaptive learning strategy and teacher importance weight, which enables a student to effectively learn from max-margin teachers and easily adapt to new languages. Moreover, we present a shared student encoder with different projection layers in support of multiple languages, which contributes to largely reducing development and machine cost. Experimental results show that AMTSS gains competitive results on the public XNLI dataset and the realistic industrial dataset AliExpress (AE) in the E-commerce scenario.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.