Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

GPFedRec: Graph-guided Personalization for Federated Recommendation (2305.07866v2)

Published 13 May 2023 in cs.IR

Abstract: The federated recommendation system is an emerging AI service architecture that provides recommendation services in a privacy-preserving manner. Using user-relation graphs to enhance federated recommendations is a promising topic. However, it is still an open challenge to construct the user-relation graph while preserving data locality-based privacy protection in federated settings. Inspired by a simple motivation, similar users share a similar vision (embeddings) to the same item set, this paper proposes a novel Graph-guided Personalization for Federated Recommendation (GPFedRec). The proposed method constructs a user-relation graph from user-specific personalized item embeddings at the server without accessing the users' interaction records. The personalized item embedding is locally fine-tuned on each device, and then a user-relation graph will be constructed by measuring the similarity among client-specific item embeddings. Without accessing users' historical interactions, we embody the data locality-based privacy protection of vanilla federated learning. Furthermore, a graph-guided aggregation mechanism is designed to leverage the user-relation graph and federated optimization framework simultaneously. Extensive experiments on five benchmark datasets demonstrate GPFedRec's superior performance. The in-depth study validates that GPFedRec can generally improve existing federated recommendation methods as a plugin while keeping user privacy safe. Code is available to ease reproducibility

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.