Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Squeeze Excitation Embedded Attention UNet for Brain Tumor Segmentation (2305.07850v1)

Published 13 May 2023 in eess.IV and cs.CV

Abstract: Deep Learning based techniques have gained significance over the past few years in the field of medicine. They are used in various applications such as classifying medical images, segmentation and identification. The existing architectures such as UNet, Attention UNet and Attention Residual UNet are already currently existing methods for the same application of brain tumor segmentation, but none of them address the issue of how to extract the features in channel level. In this paper, we propose a new architecture called Squeeze Excitation Embedded Attention UNet (SEEA-UNet), this architecture has both Attention UNet and Squeeze Excitation Network for better results and predictions, this is used mainly because to get information at both Spatial and channel levels. The proposed model was compared with the existing architectures based on the comparison it was found out that for lesser number of epochs trained, the proposed model performed better. Binary focal loss and Jaccard Coefficient were used to monitor the model's performance.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.