Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Constructing Holistic Measures for Social Biases in Masked Language Models (2305.07795v2)

Published 12 May 2023 in cs.CL

Abstract: Masked LLMs (MLMs) have been successful in many natural language processing tasks. However, real-world stereotype biases are likely to be reflected in MLMs due to their learning from large text corpora. Most of the evaluation metrics proposed in the past adopt different masking strategies, designed with the log-likelihood of MLMs. They lack holistic considerations such as variance for stereotype bias and anti-stereotype bias samples. In this paper, the log-likelihoods of stereotype bias and anti-stereotype bias samples output by MLMs are considered Gaussian distributions. Two evaluation metrics, Kullback Leibler Divergence Score (KLDivS) and Jensen Shannon Divergence Score (JSDivS) are proposed to evaluate social biases in MLMs The experimental results on the public datasets StereoSet and CrowS-Pairs demonstrate that KLDivS and JSDivS are more stable and interpretable compared to the metrics proposed in the past.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.