Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Constructing Holistic Measures for Social Biases in Masked Language Models (2305.07795v2)

Published 12 May 2023 in cs.CL

Abstract: Masked LLMs (MLMs) have been successful in many natural language processing tasks. However, real-world stereotype biases are likely to be reflected in MLMs due to their learning from large text corpora. Most of the evaluation metrics proposed in the past adopt different masking strategies, designed with the log-likelihood of MLMs. They lack holistic considerations such as variance for stereotype bias and anti-stereotype bias samples. In this paper, the log-likelihoods of stereotype bias and anti-stereotype bias samples output by MLMs are considered Gaussian distributions. Two evaluation metrics, Kullback Leibler Divergence Score (KLDivS) and Jensen Shannon Divergence Score (JSDivS) are proposed to evaluate social biases in MLMs The experimental results on the public datasets StereoSet and CrowS-Pairs demonstrate that KLDivS and JSDivS are more stable and interpretable compared to the metrics proposed in the past.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)