Emergent Mind

Abstract

Safety-critical applications require transparency in AI components, but widely used convolutional neural networks (CNNs) widely used for perception tasks lack inherent interpretability. Hence, insights into what CNNs have learned are primarily based on performance metrics, because these allow, e.g., for cross-architecture CNN comparison. However, these neglect how knowledge is stored inside. To tackle this yet unsolved problem, our work proposes two methods for estimating the layer-wise similarity between semantic information inside CNN latent spaces. These allow insights into both the flow and likeness of semantic information within CNN layers, and into the degree of their similarity between different network architectures. As a basis, we use two renowned explainable artificial intelligence (XAI) techniques, which are used to obtain concept activation vectors, i.e., global vector representations in the latent space. These are compared with respect to their activation on test inputs. When applied to three diverse object detectors and two datasets, our methods reveal that (1) similar semantic concepts are learned regardless of the CNN architecture, and (2) similar concepts emerge in similar relative layer depth, independent of the total number of layers. Finally, our approach poses a promising step towards semantic model comparability and comprehension of how different CNNs process semantic information.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.