Papers
Topics
Authors
Recent
2000 character limit reached

Towards Convergence Rates for Parameter Estimation in Gaussian-gated Mixture of Experts (2305.07572v2)

Published 12 May 2023 in stat.ML and cs.LG

Abstract: Originally introduced as a neural network for ensemble learning, mixture of experts (MoE) has recently become a fundamental building block of highly successful modern deep neural networks for heterogeneous data analysis in several applications of machine learning and statistics. Despite its popularity in practice, a satisfactory level of theoretical understanding of the MoE model is far from complete. To shed new light on this problem, we provide a convergence analysis for maximum likelihood estimation (MLE) in the Gaussian-gated MoE model. The main challenge of that analysis comes from the inclusion of covariates in the Gaussian gating functions and expert networks, which leads to their intrinsic interaction via some partial differential equations with respect to their parameters. We tackle these issues by designing novel Voronoi loss functions among parameters to accurately capture the heterogeneity of parameter estimation rates. Our findings reveal that the MLE has distinct behaviors under two complement settings of location parameters of the Gaussian gating functions, namely when all these parameters are non-zero versus when at least one among them vanishes. Notably, these behaviors can be characterized by the solvability of two different systems of polynomial equations. Finally, we conduct a simulation study to empirically verify our theoretical results.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 5 likes about this paper.