Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Convergence Rates for Parameter Estimation in Gaussian-gated Mixture of Experts (2305.07572v2)

Published 12 May 2023 in stat.ML and cs.LG

Abstract: Originally introduced as a neural network for ensemble learning, mixture of experts (MoE) has recently become a fundamental building block of highly successful modern deep neural networks for heterogeneous data analysis in several applications of machine learning and statistics. Despite its popularity in practice, a satisfactory level of theoretical understanding of the MoE model is far from complete. To shed new light on this problem, we provide a convergence analysis for maximum likelihood estimation (MLE) in the Gaussian-gated MoE model. The main challenge of that analysis comes from the inclusion of covariates in the Gaussian gating functions and expert networks, which leads to their intrinsic interaction via some partial differential equations with respect to their parameters. We tackle these issues by designing novel Voronoi loss functions among parameters to accurately capture the heterogeneity of parameter estimation rates. Our findings reveal that the MLE has distinct behaviors under two complement settings of location parameters of the Gaussian gating functions, namely when all these parameters are non-zero versus when at least one among them vanishes. Notably, these behaviors can be characterized by the solvability of two different systems of polynomial equations. Finally, we conduct a simulation study to empirically verify our theoretical results.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com