Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Complexity of conjunctive regular path query homomorphisms (2305.07271v1)

Published 12 May 2023 in cs.DB, cs.DM, cs.FL, and cs.LO

Abstract: A graph database is a digraph whose arcs are labeled with symbols from a fixed alphabet. A regular graph pattern (RGP) is a digraph whose edges are labeled with regular expressions over the alphabet. RGPs model navigational queries for graph databases called conjunctive regular path queries (CRPQs). A match of a CRPQ in the database is witnessed by a special navigational homomorphism of the corresponding RGP to the database. We study the complexity of deciding the existence of a homomorphism between two RGPs. Such homomorphisms model a strong type of containment between the two corresponding CRPQs. We show that this problem can be solved by an EXPTIME algorithm (while general query containmement in this context is EXPSPACE-complete). We also study the problem for restricted RGPs over a unary alphabet, that arise from some applications like XPath or SPARQL. For this case, homomorphism-based CRPQ containment is in NP. We prove that certain interesting cases are in fact polynomial-time solvable.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.