Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SSD-MonoDETR: Supervised Scale-aware Deformable Transformer for Monocular 3D Object Detection (2305.07270v4)

Published 12 May 2023 in cs.CV, cs.RO, and eess.IV

Abstract: Transformer-based methods have demonstrated superior performance for monocular 3D object detection recently, which aims at predicting 3D attributes from a single 2D image. Most existing transformer-based methods leverage both visual and depth representations to explore valuable query points on objects, and the quality of the learned query points has a great impact on detection accuracy. Unfortunately, existing unsupervised attention mechanisms in transformers are prone to generate low-quality query features due to inaccurate receptive fields, especially on hard objects. To tackle this problem, this paper proposes a novel "Supervised Scale-aware Deformable Attention" (SSDA) for monocular 3D object detection. Specifically, SSDA presets several masks with different scales and utilizes depth and visual features to adaptively learn a scale-aware filter for object query augmentation. Imposing the scale awareness, SSDA could well predict the accurate receptive field of an object query to support robust query feature generation. Aside from this, SSDA is assigned with a Weighted Scale Matching (WSM) loss to supervise scale prediction, which presents more confident results as compared to the unsupervised attention mechanisms. Extensive experiments on the KITTI and Waymo Open datasets demonstrate that SSDA significantly improves the detection accuracy, especially on moderate and hard objects, yielding state-of-the-art performance as compared to the existing approaches. Our code will be made publicly available at https://github.com/mikasa3lili/SSD-MonoDETR.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com