Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

How Much Partiality Is Needed for a Theory of Computability? (2305.06982v2)

Published 11 May 2023 in cs.LO and math.LO

Abstract: Partiality is a natural phenomenon in computability that we cannot get around. So, the question is whether we can give the areas where partiality occurs, that is, where non-termination happens, more structure. In this paper we consider function classes which besides the total functions only contain finite functions whose domain of definition is an initial segment of the natural numbers. Such functions appear naturally in computation. We show that a rich computability theory can be developed for these functions classes which embraces the central results of classical computability theory, in which all partial (computable) functions are considered. To do so, the concept of a G\"odel number is generalised, resulting in a broader class of numberings. The central algorithmic idea in this approach is to search in enumerated lists. In this way, function computability is reduced to set listability. Besides the development of a computability theory for the functions classes, the new numberings -- called quasi-G\"odel numberings -- are studied from a numbering-theoretic perspective: they are complete, and each of the function classes numbered in this way is a retract of the G\"odel numbered set of all partial computable functions. Moreover, the Rogers semi-lattice of all computable numberings of the considered function classes is studied and results as in the case of the computable numberings of the partial computable functions are obtained. The function classes are shown to be effectively given algebraic domains in the sense of Scott-Ershov. The quasi-G\"odel numberings are exactly the admissible numberings of the computable elements of the domain. Moreover, the domain can be computably mapped onto every other effectively given one so that every admissible numbering of the computable domain elements is generated by a quasi-G\"odel numbering via this mapping.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.