Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Adaptive Graduated Nonconvexity Loss Function for Robust Nonlinear Least Squares Solutions (2305.06869v5)

Published 11 May 2023 in cs.RO

Abstract: Many problems in robotics, such as estimating the state from noisy sensor data or aligning two point clouds, can be posed and solved as least-squares problems. Unfortunately, vanilla nonminimal solvers for least-squares problems are notoriously sensitive to outliers. As such, various robust loss functions have been proposed to reduce the sensitivity to outliers. Examples of loss functions include pseudo-Huber, Cauchy, and Geman-McClure. Recently, these loss functions have been generalized into a single loss function that enables the best loss function to be found adaptively based on the distribution of the residuals. However, even with the generalized robust loss function, most nonminimal solvers can only be solved locally given a prior state estimate due to the nonconvexity of the problem. The first contribution of this paper is to combine graduated nonconvexity (GNC) with the generalized robust loss function to solve least-squares problems without a prior state estimate and without the need to specify a loss function. Moreover, existing loss functions, including the generalized loss function, are based on Gaussian-like distribution. However, residuals are often defined as the squared norm of a multivariate error and distributed in a Chi-like fashion. The second contribution of this paper is to apply a norm-aware adaptive robust loss function within a GNC framework. The proposed approach enables a GNC formulation of a generalized loss function such that GNC can be readily applied to a wider family of loss functions. Furthermore, simulations and experiments demonstrate that the proposed method is more robust compared to non-GNC counterparts, and yields faster convergence times compared to other GNC formulations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.