Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MMF-Track: Multi-modal Multi-level Fusion for 3D Single Object Tracking (2305.06794v2)

Published 11 May 2023 in cs.CV

Abstract: 3D single object tracking plays a crucial role in computer vision. Mainstream methods mainly rely on point clouds to achieve geometry matching between target template and search area. However, textureless and incomplete point clouds make it difficult for single-modal trackers to distinguish objects with similar structures. To overcome the limitations of geometry matching, we propose a Multi-modal Multi-level Fusion Tracker (MMF-Track), which exploits the image texture and geometry characteristic of point clouds to track 3D target. Specifically, we first propose a Space Alignment Module (SAM) to align RGB images with point clouds in 3D space, which is the prerequisite for constructing inter-modal associations. Then, in feature interaction level, we design a Feature Interaction Module (FIM) based on dual-stream structure, which enhances intra-modal features in parallel and constructs inter-modal semantic associations. Meanwhile, in order to refine each modal feature, we introduce a Coarse-to-Fine Interaction Module (CFIM) to realize the hierarchical feature interaction at different scales. Finally, in similarity fusion level, we propose a Similarity Fusion Module (SFM) to aggregate geometry and texture clues from the target. Experiments show that our method achieves state-of-the-art performance on KITTI (39% Success and 42% Precision gains against previous multi-modal method) and is also competitive on NuScenes.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.