Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generating high-quality 3DMPCs by adaptive data acquisition and NeREF-based radiometric calibration with UGV plant phenotyping system (2305.06777v2)

Published 11 May 2023 in eess.IV, cs.CV, cs.LG, and q-bio.QM

Abstract: Fusion of 3D and MS imaging data has a great potential for high-throughput plant phenotyping of structural and biochemical as well as physiological traits simultaneously, which is important for decision support in agriculture and for crop breeders in selecting the best genotypes. However, lacking of 3D data integrity of various plant canopy structures and low-quality of MS images caused by the complex illumination effects make a great challenge, especially at the proximal imaging scale. Therefore, this study proposed a novel approach for adaptive data acquisition and radiometric calibration to generate high-quality 3DMPCs of plants. An efficient NBV planning method based on an UGV plant phenotyping system with a multi-sensor-equipped robotic arm was proposed to achieve adaptive data acquisition. The NeREF was employed to predict the DN values of the hemispherical reference for radiometric calibration. For NBV planning, the average total time for single plant at a joint speed of 1.55 rad/s was about 62.8 s, with an average reduction of 18.0% compared to the unplanned. The integrity of the whole-plant data was improved by an average of 23.6% compared to the fixed viewpoints alone. Compared with the ASD measurements, the RMSE of the reflectance spectra obtained from 3DMPCs at different regions of interest was 0.08 with an average decrease of 58.93% compared to the results obtained from the single-frame of MS images without 3D radiometric calibration. The 3D-calibrated plant 3DMPCs improved the predictive accuracy of PLSR for chlorophyll content, with an average increase of 0.07 in R2 and an average decrease of 21.25% in RMSE. Our approach introduced a fresh perspective on generating high-quality 3DMPCs of plants under the natural light condition, enabling more precise analysis of plant morphological and physiological parameters.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.