Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Algorithms for Bounded Weighted Edit Distance (2305.06659v2)

Published 11 May 2023 in cs.DS

Abstract: The edit distance of two strings is the minimum number of insertions, deletions, and substitutions of characters needed to transform one string into the other. The textbook dynamic-programming algorithm computes the edit distance of two length-$n$ strings in $O(n2)$ time, which is optimal up to subpolynomial factors under SETH. An established way of circumventing this hardness is to consider the bounded setting, where the running time is parameterized by the edit distance $k$. A celebrated algorithm by Landau and Vishkin (JCSS '88) achieves time $O(n + k2)$, which is optimal as a function of $n$ and $k$. Most practical applications rely on a more general weighted edit distance, where each edit has a weight depending on its type and the involved characters from the alphabet $\Sigma$. This is formalized through a weight function $w : \Sigma\cup{\varepsilon}\times\Sigma\cup{\varepsilon}\to\mathbb{R}$ normalized so that $w(a,a)=0$ and $w(a,b)\geq 1$ for all $a,b \in \Sigma\cup{\varepsilon}$ with $a \neq b$; the goal is to find an alignment of the two strings minimizing the total weight of edits. The $O(n2)$-time algorithm supports this setting seamlessly, but only very recently, Das, Gilbert, Hajiaghayi, Kociumaka, and Saha (STOC '23) gave the first non-trivial algorithm for the bounded version, achieving time $O(n + k5)$. While this running time is linear for $k\le n{1/5}$, it is still very far from the bound $O(n+k2)$ achievable in the unweighted setting. In this paper, we essentially close this gap by showing both an improved $\tilde O(n+\sqrt{nk3})$-time algorithm and, more surprisingly, a matching lower bound: Conditioned on the All-Pairs Shortest Paths (APSP) hypothesis, our running time is optimal for $\sqrt{n}\le k\le n$ (up to subpolynomial factors). This is the first separation between the complexity of the weighted and unweighted edit distance problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com