Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On Practical Robust Reinforcement Learning: Practical Uncertainty Set and Double-Agent Algorithm (2305.06657v3)

Published 11 May 2023 in cs.LG and cs.AI

Abstract: Robust reinforcement learning (RRL) aims at seeking a robust policy to optimize the worst case performance over an uncertainty set of Markov decision processes (MDPs). This set contains some perturbed MDPs from a nominal MDP (N-MDP) that generate samples for training, which reflects some potential mismatches between training (i.e., N-MDP) and true environments. In this paper we present an elaborated uncertainty set by excluding some implausible MDPs from the existing sets. Under this uncertainty set, we develop a sample-based RRL algorithm (named ARQ-Learning) for tabular setting and characterize its finite-time error bound. Also, it is proved that ARQ-Learning converges as fast as the standard Q-Learning and robust Q-Learning while ensuring better robustness. We introduce an additional pessimistic agent which can tackle the major bottleneck for the extension of ARQ-Learning into the cases with larger or continuous state spaces. Incorporating this idea into RL algorithms, we propose double-agent algorithms for model-free RRL. Via experiments, we demonstrate the effectiveness of the proposed algorithms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube