Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spatiotemporal Regularized Tucker Decomposition Approach for Traffic Data Imputation (2305.06563v4)

Published 11 May 2023 in stat.ML and cs.LG

Abstract: In intelligent transportation systems, traffic data imputation, estimating the missing value from partially observed data is an inevitable and challenging task. Previous studies have not fully considered traffic data's multidimensionality and spatiotemporal correlations, but they are vital to traffic data recovery, especially for high-level missing scenarios. To address this problem, we propose a novel spatiotemporal regularized Tucker decomposition method. First, the traffic matrix is converted into a third-order tensor. Then, based on Tucker decomposition, the tensor is approximated by multiplying non-negative factor matrices with a sparse core tensor. Notably, we do not need to set the tensor rank or determine it through matrix nuclear-norm minimization or tensor rank minimization. The low rankness is characterized by the $l_1$-norm of the core tensor, while the manifold regularization and temporal constraint are employed to capture spatiotemporal correlations and further improve imputation performance. We use an alternating proximal gradient method with guaranteed convergence to address the proposed model. Numerical experiments show that our proposal outperforms matrix-based and tensor-based baselines on real-world spatiotemporal traffic datasets in various missing scenarios.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.