Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Word Grounded Graph Convolutional Network (2305.06434v1)

Published 10 May 2023 in cs.CL and cs.LG

Abstract: Graph Convolutional Networks (GCNs) have shown strong performance in learning text representations for various tasks such as text classification, due to its expressive power in modeling graph structure data (e.g., a literature citation network). Most existing GCNs are limited to deal with documents included in a pre-defined graph, i.e., it cannot be generalized to out-of-graph documents. To address this issue, we propose to transform the document graph into a word graph, to decouple data samples (i.e., documents in training and test sets) and a GCN model by using a document-independent graph. Such word-level GCN could therefore naturally inference out-of-graph documents in an inductive way. The proposed Word-level Graph (WGraph) can not only implicitly learning word presentation with commonly-used word co-occurrences in corpora, but also incorporate extra global semantic dependency derived from inter-document relationships (e.g., literature citations). An inductive Word-grounded Graph Convolutional Network (WGCN) is proposed to learn word and document representations based on WGraph in a supervised manner. Experiments on text classification with and without citation networks evidence that the proposed WGCN model outperforms existing methods in terms of effectiveness and efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.