Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Challenges in Automatic Software Optimization: the Energy Efficiency Case (2305.06397v1)

Published 10 May 2023 in cs.DC

Abstract: With the advent of the Exascale capability allowing supercomputers to perform at least $10{18}$ IEEE 754 Double Precision (64 bits) operations per second, many concerns have been raised regarding the energy consumption of high-performance computing code. Recently, Frontier operated by the Oak Ridge National Laboratory, has become the first supercomputer to break the exascale barrier. In total, contains 9,408 CPUs, 37,632 GPUs, and 8,730,112 cores. This world-leading supercomputer consumes about 21 megawatts which is truly remarkable as was also ranked first on the Green500 list before being recently replaced. The previous top Green500 machine, MN-3 in Japan, provided 39.38 gigaflops per watt, while the delivered 62.68 gigaflops per watt. All these infrastructure and hardware improvements are just the tip of the Iceberg. Energy-aware code is now required to minimize the energy consumption of distributed and/or multi-threaded software. For example, the data movement bottleneck is responsible for $35-60\%$ of a system's energy consumption during intra-node communication. In an HPC environment, additional energy is consumed through inter-node communication. This position paper aims to introduce future research directions to enter now in the age of energy-aware software. The paper is organized as follows. First, we introduce related works regarding measurement and energy optimization. Then we propose to focus on the two different levels of granularity in energy optimization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.