Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Rethinking the Value of Labels for Instance-Dependent Label Noise Learning (2305.06247v2)

Published 10 May 2023 in cs.LG

Abstract: Label noise widely exists in large-scale datasets and significantly degenerates the performances of deep learning algorithms. Due to the non-identifiability of the instance-dependent noise transition matrix, most existing algorithms address the problem by assuming the noisy label generation process to be independent of the instance features. Unfortunately, noisy labels in real-world applications often depend on both the true label and the features. In this work, we tackle instance-dependent label noise with a novel deep generative model that avoids explicitly modeling the noise transition matrix. Our algorithm leverages casual representation learning and simultaneously identifies the high-level content and style latent factors from the data. By exploiting the supervision information of noisy labels with structural causal models, our empirical evaluations on a wide range of synthetic and real-world instance-dependent label noise datasets demonstrate that the proposed algorithm significantly outperforms the state-of-the-art counterparts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.