Papers
Topics
Authors
Recent
2000 character limit reached

Algebra Error Classification with Large Language Models

Published 8 May 2023 in cs.CL and cs.AI | (2305.06163v1)

Abstract: Automated feedback as students answer open-ended math questions has significant potential in improving learning outcomes at large scale. A key part of automated feedback systems is an error classification component, which identifies student errors and enables appropriate, predefined feedback to be deployed. Most existing approaches to error classification use a rule-based method, which has limited capacity to generalize. Existing data-driven methods avoid these limitations but specifically require mathematical expressions in student responses to be parsed into syntax trees. This requirement is itself a limitation, since student responses are not always syntactically valid and cannot be converted into trees. In this work, we introduce a flexible method for error classification using pre-trained LLMs. We demonstrate that our method can outperform existing methods in algebra error classification, and is able to classify a larger set of student responses. Additionally, we analyze common classification errors made by our method and discuss limitations of automated error classification.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.