Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Self-Supervised Federated Learning for Fast MR Imaging (2305.06066v1)

Published 10 May 2023 in eess.IV

Abstract: Federated learning (FL) based magnetic resonance (MR) image reconstruction can facilitate learning valuable priors from multi-site institutions without violating patient's privacy for accelerating MR imaging. However, existing methods rely on fully sampled data for collaborative training of the model. The client that only possesses undersampled data can neither participate in FL nor benefit from other clients. Furthermore, heterogeneous data distributions hinder FL from training an effective deep learning reconstruction model and thus cause performance degradation. To address these issues, we propose a Self-Supervised Federated Learning method (SSFedMRI). SSFedMRI explores the physics-based contrastive reconstruction networks in each client to realize cross-site collaborative training in the absence of fully sampled data. Furthermore, a personalized soft update scheme is designed to simultaneously capture the global shared representations among different centers and maintain the specific data distribution of each client. The proposed method is evaluated on four datasets and compared to the latest state-of-the-art approaches. Experimental results demonstrate that SSFedMRI possesses strong capability in reconstructing accurate MR images both visually and quantitatively on both in-distribution and out-of-distribution datasets.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.