Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multilingual LLMs are Better Cross-lingual In-context Learners with Alignment (2305.05940v3)

Published 10 May 2023 in cs.CL

Abstract: In-context learning (ICL) unfolds as LLMs become capable of inferring test labels conditioned on a few labeled samples without any gradient update. ICL-enabled LLMs provide a promising step forward toward bypassing recurrent annotation costs in a low-resource setting. Yet, only a handful of past studies have explored ICL in a cross-lingual setting, in which the need for transferring label-knowledge from a high-resource language to a low-resource one is immensely crucial. To bridge the gap, we provide the first in-depth analysis of ICL for cross-lingual text classification. We find that the prevalent mode of selecting random input-label pairs to construct the prompt-context is severely limited in the case of cross-lingual ICL, primarily due to the lack of alignment in the input as well as the output spaces. To mitigate this, we propose a novel prompt construction strategy -- Cross-lingual In-context Source-Target Alignment (X-InSTA). With an injected coherence in the semantics of the input examples and a task-based alignment across the source and target languages, X-InSTA is able to outperform random prompt selection by a large margin across three different tasks using 44 different cross-lingual pairs.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.