Text-guided High-definition Consistency Texture Model (2305.05901v1)
Abstract: With the advent of depth-to-image diffusion models, text-guided generation, editing, and transfer of realistic textures are no longer difficult. However, due to the limitations of pre-trained diffusion models, they can only create low-resolution, inconsistent textures. To address this issue, we present the High-definition Consistency Texture Model (HCTM), a novel method that can generate high-definition and consistent textures for 3D meshes according to the text prompts. We achieve this by leveraging a pre-trained depth-to-image diffusion model to generate single viewpoint results based on the text prompt and a depth map. We fine-tune the diffusion model with Parameter-Efficient Fine-Tuning to quickly learn the style of the generated result, and apply the multi-diffusion strategy to produce high-resolution and consistent results from different viewpoints. Furthermore, we propose a strategy that prevents the appearance of noise on the textures caused by backpropagation. Our proposed approach has demonstrated promising results in generating high-definition and consistent textures for 3D meshes, as demonstrated through a series of experiments.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.