Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

DPMLBench: Holistic Evaluation of Differentially Private Machine Learning (2305.05900v2)

Published 10 May 2023 in cs.LG, cs.CR, and cs.CV

Abstract: Differential privacy (DP), as a rigorous mathematical definition quantifying privacy leakage, has become a well-accepted standard for privacy protection. Combined with powerful machine learning techniques, differentially private machine learning (DPML) is increasingly important. As the most classic DPML algorithm, DP-SGD incurs a significant loss of utility, which hinders DPML's deployment in practice. Many studies have recently proposed improved algorithms based on DP-SGD to mitigate utility loss. However, these studies are isolated and cannot comprehensively measure the performance of improvements proposed in algorithms. More importantly, there is a lack of comprehensive research to compare improvements in these DPML algorithms across utility, defensive capabilities, and generalizability. We fill this gap by performing a holistic measurement of improved DPML algorithms on utility and defense capability against membership inference attacks (MIAs) on image classification tasks. We first present a taxonomy of where improvements are located in the machine learning life cycle. Based on our taxonomy, we jointly perform an extensive measurement study of the improved DPML algorithms. We also cover state-of-the-art label differential privacy (Label DP) algorithms in the evaluation. According to our empirical results, DP can effectively defend against MIAs, and sensitivity-bounding techniques such as per-sample gradient clipping play an important role in defense. We also explore some improvements that can maintain model utility and defend against MIAs more effectively. Experiments show that Label DP algorithms achieve less utility loss but are fragile to MIAs. To support our evaluation, we implement a modular re-usable software, DPMLBench, which enables sensitive data owners to deploy DPML algorithms and serves as a benchmark tool for researchers and practitioners.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube