Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CIT-EmotionNet: CNN Interactive Transformer Network for EEG Emotion Recognition (2305.05548v1)

Published 7 May 2023 in eess.SP and cs.LG

Abstract: Emotion recognition using Electroencephalogram (EEG) signals has emerged as a significant research challenge in affective computing and intelligent interaction. However, effectively combining global and local features of EEG signals to improve performance in emotion recognition is still a difficult task. In this study, we propose a novel CNN Interactive Transformer Network for EEG Emotion Recognition, known as CIT-EmotionNet, which efficiently integrates global and local features of EEG signals. Initially, we convert raw EEG signals into spatial-frequency representations, which serve as inputs. Then, we integrate Convolutional Neural Network (CNN) and Transformer within a single framework in a parallel manner. Finally, we design a CNN interactive Transformer module, which facilitates the interaction and fusion of local and global features, thereby enhancing the model's ability to extract both types of features from EEG spatial-frequency representations. The proposed CIT-EmotionNet outperforms state-of-the-art methods, achieving an average recognition accuracy of 98.57\% and 92.09\% on two publicly available datasets, SEED and SEED-IV, respectively.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.